Low-rank optimization on matrix and tensor varieties

Bin Gao

Academy of Mathematics and Systems Science Chinese Academy of Sciences

Joint work with Renfeng Peng (AMSS, CAS) Ya-xiang Yuan (AMSS, CAS)

1 Low-rank optimization on matrix/tensor spaces

- 2 Geometry of Tucker tensor varieties
- 3 Geometric methods
- 4 Tucker rank-adaptive method
- 5 Numerical experiments: tensor completion

Low-rank optimization on matrix/tensor spaces

Low-rank problems

- Low-rank matrix/tensor completion [Wen-Yin-Zhang'12; Xu-Yin-Wen-Zhang'12; Kressner-Steinlechner-Vandereycken'14; Steinlechner'16; Kasai-Mishra'16; Shen-Liu'20; Dong-G.-Guan-Glineur'22; Zhao-Bai-Sun-Zheng'22; Yu-Zang-Huang'23; G.-Peng-Yuan'24]
- Low-rank approximation of higher-dimensional functions [Grasedyck-Kressner-Tobler'13; Uschmajew-Vandereycken'20]
- Low-rank solution of tensor equations [Kressner-Steinlechner-Vandereycken'16]
- Low-rank SDP [Lemon-So-Ye'16; Wang-Deng-Liu-Wen'23; Tang-Toh'23]
- Low-rank solution of high-dimensional PDEs [Eigel-Schneider-Sommer'22; Bachmayr-Eisenmann-Uschmajew'23; Wang-Lin-Liao-Liu-Xie'23]

Applications

- Recommendation system: movie ratings [Frolov-Oseledets'17]
- Hyperspectral Images [Zhang-He-Zhang-Shen-Yuan'13; Zhuang-Fu-Ng'21]
- Image and video inpainting [Bertalmio-Sapiro-Caselles-Ballester'00; Fu-Ruan-Luo-An-Jin'21; Luo-Zhao-Li-Ng-Meng'23; Bai-Zhang-Ni-Cui'16]
- EEG (brain signals) data [Mørup-Hansen-Herrmann-Parnas-Arnfred'06; Kong-Kong-Fan-Zhao-Cichoki'17]
- Magnetic resonance imaging (MRI) [Banco-Aeron-Hoge'16; Choi-Bao-Zhang'18; Fessler'20]
- Data analysis, e.g., Weather forecast [Loucheur-Absil-Journee'23] and Markov models [Zhu-Li-Wang-Zhang'22]

Low-rank approximation - matrix

Matrix rank, singular value decomposition (SVD)

Low-rank matrix factorizations

- Input data (A): Traffic matrix (size: $\sim 10^3 \times 10^5$)
- Low-rank approx. by $\hat{X}_k := U_k \Sigma_k V_k^{\top}$ (truncated SVD) k = 10

accuracy
$$(1 - \frac{\|U_k \Sigma_k V_k^\top - A\|}{\|A\|_F})$$
:67.6%storage $\frac{\# parameters}{\# parameters} (U_k, \Sigma_k, V_k)}{\# parameters} :1.1% only!$

Low-rank assumption

- \odot Store a full tensor: $\mathcal{O}(n^d)$ number of parameters!
- © Low-rank tensor decomposition: save storage

Full image: 20MB

Compressed image: 0.4MB

Tucker rank: [65, 65, 5] Relative error: 0.0743

Low-rank optimization on matrix manifold

Optimization on the set of fixed-rank matrices

$$\begin{array}{ll} \min_{\mathbf{X} \in \mathbb{R}^{m \times n}} & f(\mathbf{X}) \\ \text{s. t.} & \mathbf{X} \in \mathbb{R}^{m \times n}_{\underline{r}} := \{ \mathbf{X} \in \mathbb{R}^{m \times n} : \operatorname{rank}(\mathbf{X}) = \underline{r} \} \end{array}$$

- $\mathbb{R}^{m \times n}_{\underline{r}}$: smooth *manifold* [Helmke-Shayman'95]
- $\underline{r} \leq \min(m, n)$: rank parameter

Tangent space [Vandereycken'13]

Given a thin SVD $\mathbf{X} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\text{T}}$

$$\begin{aligned} \mathbf{T}_{\mathbf{X}} \mathbb{R}_{\underline{r}}^{m \times n} &= \begin{bmatrix} \mathbf{U} & \mathbf{U}^{\perp} \end{bmatrix} \begin{bmatrix} \mathbb{R}^{\underline{r} \times \underline{r}} & \mathbb{R}^{\underline{r} \times (n-\underline{r})} \\ \mathbb{R}^{(m-\underline{r}) \times \underline{r}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{V} & \mathbf{V}^{\perp} \end{bmatrix}^{\mathsf{T}} \\ &= \begin{bmatrix} \mathbf{U} & \mathbf{U}^{\perp} \end{bmatrix} \begin{bmatrix} \mathbf{V} & \mathbf{V}^{\perp} \end{bmatrix}^{\mathsf{T}} \end{aligned}$$

Existing methods

Optimization on manifold $\mathbb{R}^{m \times n}_r$

- Online-learning procedure [shalit'12]
- Riemannian conjugate gradient descent [Vandereycken'13]
- Quotient geometry [Mishra-Meyer-Bonnabel-Sepulchre'14; Luo-Li-Zhang'23]

 $\rightsquigarrow \mathbb{R}^{m \times n}_{\underline{r}}$ is NOT closed!

How to choose a rank parameter?

$$\begin{array}{ll} \min_{\mathbf{X} \in \mathbb{R}^{m \times n}} & f(\mathbf{X}) \\ \text{s. t.} & \mathbf{X} \in \mathbb{R}_{\leq r}^{m \times n} := \{ \mathbf{X} \in \mathbb{R}^{m \times n} : \operatorname{rank}(\mathbf{X}) \leq r \} \end{array}$$

Set of bounded-rank matrices $\mathbb{R}_{\leq r}^{m \times n}$

- closure of $\mathbb{R}^{m \times n}_r$
- real-algebraic variety
- more flexible choices of rank

Tangent cone [Schneider-Uschmajew'15]

Given a thin SVD $\mathbf{X} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$

$$\begin{aligned} \mathbf{T}_{\mathbf{X}} \mathbb{R}_{\leq r}^{m \times n} &= \begin{bmatrix} \mathbf{U} & \mathbf{U}^{\perp} \end{bmatrix} \begin{bmatrix} \mathbb{R}^{T \times \underline{r}} & \mathbb{R}^{T \times (n-\underline{r})} \\ \mathbb{R}^{(m-\underline{r}) \times \underline{r}} & \mathbb{R}^{(m-\underline{r}) \times (n-\underline{r})} \end{bmatrix} \begin{bmatrix} \mathbf{V} & \mathbf{V}^{\perp} \end{bmatrix}^{\mathsf{T}} \\ &= \begin{bmatrix} \mathbf{U} & \mathbf{U}_{1} & \mathbf{U}_{2} \end{bmatrix} \checkmark \begin{bmatrix} \underline{r} & \ell \\ \mathbb{R}^{\ell} & \mathbb{R}^{\ell} \end{bmatrix} \begin{bmatrix} \mathbf{V} & \mathbf{V}_{1} & \mathbf{V}_{2} \end{bmatrix}^{\mathsf{T}} \end{aligned}$$

with $[U \ U_1 \ U_2] \in \mathcal{O}(m)$, $[V \ V_1 \ V_2] \in \mathcal{O}(n)$, and $\ell = 0, 1, \dots, r - \underline{r}$

Line-search methods

• Projected gradient descent method [Schneider-Uschmajew'15]

$$\mathbf{X}^{(t+1)} = \mathbf{P}_{\mathbb{R}_{\leq r}^{m \times n}} \left(\mathbf{X}^{(t)} + \alpha^{(t)} \mathbf{P}_{\mathbf{T}_{\mathbf{X}^{(t)}} \mathbb{R}_{\leq r}^{m \times n}} (-\nabla f(\mathbf{X}^{(t)})) \right)$$

- Gradient sampling method [Hosseini-Uschmajew'19]
- Riemannian rank-adaptive method [G.-Absil'22]

Optimization on (product) manifold through a lift $(L, R) \mapsto LR^T$

- Riemannian trust-region method [Levin-Kileel-Boumal'23]
- Gauss-Southwell type methods [Olikier-Uschmajew-Vandereycken'23]

Low-rank optimization in semidefinite programming

• Riemannian method for SDP relaxation [Tang-Toh'23]

Tensor format: a view of product manifold

 $\mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$

$$\min_{\mathcal{X}\in\mathcal{M}:=\mathcal{M}_1\times\mathcal{M}_2\times\cdots\times\mathcal{M}_K} f(\mathcal{X})$$

• CANDECOMP/PARAFAC (CP) decomposition [Hitchcock'27]

$$\mathcal{M} = \mathbb{R}^{n_1 \times r} \times \cdots \times \mathbb{R}^{n_d \times r}$$

Tucker decomposition [Tucker'63]

$$\mathcal{M} = \operatorname{St}(r_1, n_1) \times \cdots \times \operatorname{St}(r_d, n_d) \times \mathbb{R}^{r_1 \times \cdots \times r_d}$$

Tensor train decomposition [Oseledet'11]

$$\mathcal{M} = \mathbb{R}^{n_1 \times r_2} \times \mathbb{R}^{r_2 \times n_2 \times r_3} \times \dots \times \mathbb{R}^{r_d \times n_d}$$

• Tensor ring decomposition [Zhao et al.'16]

$$\mathcal{M} = \mathbb{R}^{r_1 \times n_1 \times r_2} \times \cdots \times \mathbb{R}^{r_d \times n_d \times r_1}$$

Low-rank tensor optimization

$$\min_{\mathcal{X}} \quad f(\mathcal{X}) \\ \text{s.t.} \quad \mathcal{X} \in \mathcal{M}_{\mathbf{r}}$$

Tensors with fixed Tucker rank

- A smooth manifold [Uschmajew and Vandereycken'13]
- Riemannian conjugate gradient method [Kressner-Steinlechner-Vandereycken'14]
- Riemannian conjugate gradient method under quotient geometry [Kasai-Mishra'16]

Tensors with fixed tensor train rank

- A smooth manifold [Uschmajew-Vandereycken'13]
- Riemannian conjugate gradient method [Steinlechner'16]
- Quotient geometry [Cai-Huang-Wang-Wei'22]

 $\rightsquigarrow \mathcal{M}_r$ is NOT closed!

How to choose a rank parameter?

$$\min_{\mathcal{X}} \quad f(\mathcal{X}) \\ \text{s.t.} \quad \mathcal{X} \in \mathcal{M}_{\leq \mathbf{r}}$$

 $f: \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \to \mathbb{R}$: a smooth function

Tensor train varieties

- Tangent cone [Kutschan'18]
- Rank-estimation method [Vermeylen-Olikier-Absil'23]

Tucker tensor varieties

- $\mathcal{M}_{\leq r}$: real-algebraic varieties, closed
- Optimality condition [Luo-Qi'23]

\rightsquigarrow Geometry of $\mathcal{M}_{\leq r}$ is intricate!

Geometry of Tucker tensor varieties

 $\mathcal{X} = \mathcal{G} \times_1 \mathbf{U}_1 \times_2 \mathbf{U}_2 \times_3 \mathbf{U}_3$

 \mathcal{G} : core tensor $\mathcal{G} \in \mathbb{R}^{r_1 \times r_2 \times r_3}$ \mathbf{U}_k : "principle components" $\mathbf{U}_k \in \mathbb{R}^{n_k \times r_k}$

Tucker decomposition [Tucker'63]

- Matrix case: $\mathbf{X} = \mathbf{S} \times_1 \mathbf{U} \times_2 \mathbf{V} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}}$
- Search space:

$$\operatorname{St}(r_1, n_1) \times \cdots \times \operatorname{St}(r_d, n_d) \times \mathbb{R}^{r_1 \times \cdots \times r_d}$$

• Storage:

$$n_1r_1 + \cdots + n_dr_d + r_1 \cdots r_d$$

- Tucker rank: rank_{tc}(\mathcal{X}) = (r_1, \ldots, r_d)
- Fixed-rank Tucker manifold: $\mathcal{M}_{\mathbf{r}} = \{\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} : \operatorname{rank}_{\operatorname{tc}}(\mathcal{X}) = \mathbf{r}\}$

Given $\mathcal{X} = \mathcal{G} \times_1 \mathbf{U}_1 \cdots \times_d \mathbf{U}_d$ with $\operatorname{rank}_{\operatorname{tc}}(\mathcal{X}) = \underline{\mathbf{r}} = \mathbf{r}$

Tangent space [Koch-Lubich'10]

$$\mathbf{T}_{\mathcal{X}}\mathcal{M}_{\mathbf{r}} = \left\{ \begin{array}{l} \dot{\mathcal{G}} \times_{1} \mathbf{U}_{1} \cdots \times_{d} \mathbf{U}_{d} + \sum_{k=1}^{d} \mathcal{G} \times_{k} \dot{\mathbf{U}}_{k} \times_{j \neq k} \mathbf{U}_{j} : \\ \dot{\mathcal{G}} \in \mathbb{R}^{r_{1} \times \cdots \times r_{d}}, \dot{\mathbf{U}}_{k} \in \mathbb{R}^{n_{k} \times r_{k}}, \dot{\mathbf{U}}_{k}^{\mathsf{T}} \mathbf{U}_{k} = 0 \end{array} \right\}$$

A new reformulation

Given $\mathcal{V}\in \mathrm{T}_\mathcal{X}\mathcal{M}_r$

$$\begin{split} \mathcal{V} &= \dot{\mathcal{G}} \times_{1} \mathbf{U}_{1} \cdots \times_{d} \mathbf{U}_{d} + \sum_{k=1}^{d} \mathcal{G} \times_{k} \dot{\mathbf{U}}_{k} \times_{j \neq k} \mathbf{U}_{j} \\ &= \dot{\mathcal{G}} \times_{1} \mathbf{U}_{1} \cdots \times_{d} \mathbf{U}_{d} + \sum_{k=1}^{d} \mathcal{G} \times_{k} (\mathbf{U}_{k}^{\perp} \mathbf{R}_{k}) \times_{j \neq k} \mathbf{U}_{j} \\ &= \dot{\mathcal{G}} \times_{1} \mathbf{U}_{1} \cdots \times_{d} \mathbf{U}_{d} + \sum_{k=1}^{d} (\mathcal{G} \times_{k} \mathbf{R}_{k}) \times_{k} \mathbf{U}_{k}^{\perp} \times_{j \neq k} \mathbf{U}_{j} \end{split}$$

A new reformulation of tangent space

Given $\mathcal{X} = \mathcal{G} \times_1 \mathbf{U}_1 \cdots \times_d \mathbf{U}_d$ with $\operatorname{rank}_{\operatorname{tc}}(\mathcal{X}) = \underline{\mathbf{r}} = \mathbf{r}$

An illustration for third-order tensor (d = 3)

 $\underline{G}_k := \mathcal{G} \times_k \mathbf{R}_k$

Orthogonal projection onto $\mathrm{T}_{\mathcal{X}}\mathcal{M}_{\mathbf{r}}$

$$\operatorname{P}_{\operatorname{T}_{\mathcal{X}}\mathcal{M}_{\mathbf{r}}}\mathcal{A} = \mathcal{A} \times_{k=1}^{d} \operatorname{P}_{\operatorname{U}_{k}} + \sum_{k=1}^{d} \mathcal{G} \times_{k} \left(\operatorname{P}_{\operatorname{U}_{k}}^{\perp} \left(\mathcal{A} \times_{j \neq k} \operatorname{\mathbf{U}}_{j}^{\mathsf{T}} \right)_{(k)} \operatorname{\mathbf{G}}_{(k)}^{\dagger} \right) \times_{j \neq k} \operatorname{\mathbf{U}}_{j}$$

- Projection onto each "block"

Tangent cone of Tucker tensor varieties

Given $\mathcal{X} = \mathcal{G} \times_1 \mathbf{U}_1 \cdots \times_d \mathbf{U}_d$ with $\operatorname{rank_{tc}}(\mathcal{X}) = \underline{\mathbf{r}} \leq \mathbf{r}$

Tucker tensor varieties: $\mathcal{M}_{\leq \mathbf{r}} = \{\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} : \operatorname{rank}_{\operatorname{tc}}(\mathcal{X}) \leq \mathbf{r}\}$

(Bouligand) tangent cone

$$T_{\mathcal{X}}\mathcal{M}_{\leq \mathbf{r}} := \{\mathcal{V} : \exists t^{(i)} \to 0, \ \mathcal{X}^{(i)} \to \mathcal{X} \text{ in } \mathcal{M}_{\leq \mathbf{r}}, \text{ s. t. } \frac{\mathcal{X}^{(i)} - \mathcal{X}}{t^{(i)}} \to \mathcal{V}\}$$
$$\subseteq \mathbb{R}^{n_1 \times n_2 \times \dots \times n_d}$$

Connection to matrix varieties

$$\mathcal{M}_{\leq \mathbf{r}} = \bigcap_{k=1}^{d} \operatorname{ten}_{(k)} \left(\mathbb{R}_{\leq r_k}^{n_k \times n_{-k}} \right)$$

• A subset of the intersection of the tangent cone of matrix varieties

$$\mathbf{T}_{\mathcal{X}}\mathcal{M}_{\leq \mathbf{r}} \subseteq \bigcap_{k=1}^{d} \operatorname{ten}_{(k)} \left(\mathbf{T}_{\mathbf{X}_{(k)}} \mathbb{R}_{\leq r_{k}}^{n_{k} \times n_{-k}} \right)$$

An explicit parametrization

 $\mathcal{C} \in \mathbb{R}^{r_1 \times \cdots \times r_d}, \mathbf{R}_{k,2} \in \mathbb{R}^{(n_k - r_k) \times \underline{r}_k}, \mathbf{U}_{k,1} \in \mathrm{St}(r_k - \underline{r}_k, n_k) \text{ and } \mathbf{U}_{k,2} \in \mathrm{St}(n_k - r_k, n_k) \text{ are arbitrary that satisfy } [\mathbf{U}_k | \mathbf{U}_{k,1} | \mathbf{U}_{k,2}] \in \mathcal{O}(n_k) \text{ for } k \in [d]$

$$\mathcal{V} = \mathcal{C} \times_{k=1}^{d} \begin{bmatrix} \mathbf{U}_{k} & \mathbf{U}_{k,1} \end{bmatrix} + \sum_{k=1}^{d} \mathcal{G} \times_{k} (\mathbf{U}_{k,2} \mathbf{R}_{k,2}) \times_{j \neq k} \mathbf{U}_{j},$$

Characterization of tangent cone

$$\mathbf{T}_{\mathcal{X}}\mathcal{M}_{\leq \mathbf{r}} = \bigcap_{k=1}^{d} \operatorname{ten}_{(k)} \left(\mathbf{T}_{\mathbf{X}_{(k)}} \mathbb{R}_{\leq r_{k}}^{n_{k} \times n_{-k}} \right)$$

An illustration for third-order tensor (d = 3)

Connection to matrix varieties

Geometric methods

Projected gradient descent (P2GD) [Matrix: Schneider-Uschmajew'15]

$$\mathcal{X}^{(t+1)} = \mathbf{P}_{\leq \mathbf{r}} \left(\mathcal{X}^{(t)} + s^{(t)} \mathbf{P}_{\mathbf{T}_{\mathcal{X}^{(t)}} \mathcal{M}_{\leq \mathbf{r}}} (-\nabla f(\mathcal{X}^{(t)})) \right)$$

→ Two projections are computationally intractable!

Approximate projections

• HOSVD instead of $P_{\leq r}$:

$$\mathbf{P}^{\mathrm{HO}}_{\leq \mathbf{r}}(\mathcal{A}) := \mathbf{P}^{d}_{\leq r_{d}}(\mathbf{P}^{d-1}_{\leq r_{d-1}} \cdots (\mathbf{P}^{1}_{\leq r_{1}}(\mathcal{A})))$$

• An approximate projection of $P_{T_{\chi(t)}\mathcal{M} \leq r}$:

$$\tilde{\mathrm{P}}_{\mathrm{T}_{\mathcal{X}}\mathcal{M}_{\leq \mathrm{r}}}(\mathcal{A}) = \mathcal{A} \times_{k=1}^{d} \mathrm{P}_{\tilde{\mathbf{S}}_{k}} + \sum_{k=1}^{d} \mathcal{G} \times_{k} \left(\mathrm{P}_{\tilde{\mathbf{S}}_{k}}^{\perp} \left(\mathcal{A} \times_{j \neq k} \mathbf{U}_{j}^{\mathsf{T}} \right)_{(k)} \mathbf{G}_{(k)}^{\dagger} \right) \times_{j \neq k} \mathbf{U}_{j},$$

where $ilde{\mathbf{S}}_k := [\mathbf{U}_k \; ilde{\mathbf{U}}_{k,1}]$ is orthogonal

$$\mathcal{X}^{(t+1)} = \mathbb{P}_{\leq \mathbf{r}}^{\mathrm{HO}} \left(\mathcal{X}^{(t)} + s^{(t)} \tilde{\mathbb{P}}_{\mathbb{T}_{\mathcal{X}^{(t)}}} \mathcal{M}_{\leq \mathbf{r}}(-\nabla f(\mathcal{X}^{(t)})) \right)$$

Gradient-Related Approximate Projection method (GRAP)

- Search direction: $g^{(t)} = \tilde{P}_{T_{\mathcal{X}^{(t)}}\mathcal{M}_{\leq r}}(-\nabla f(\mathcal{X}^{(t)}))$
- Stepsize: $s^{(t)}$ Armijo backtracking line search
- Update: $\mathcal{X}^{(t+1)} = \Pr_{<\mathbf{r}}^{\mathrm{HO}}(\mathcal{X}^{(t)} + s^{(t)}g^{(t)})$

Revisiting the parametrization of tangent cone

$$\mathcal{V} = \mathcal{C} \times_{k=1}^{d} \begin{bmatrix} \mathbf{U}_{k} & \mathbf{U}_{k,1} \end{bmatrix} + \sum_{k=1}^{d} \mathcal{G} \times_{k} (\mathbf{U}_{k,2}\mathbf{R}_{k,2}) \times_{j \neq k} \mathbf{U}_{j}$$
$$= \mathcal{V}_{0} + \sum_{k=1}^{d} \mathcal{V}_{k}$$

Surprising observations

$$egin{aligned} \mathcal{X} + \mathcal{V}_0 &= \mathcal{G} imes_{k=1}^d \mathbf{U}_k + \mathcal{C} imes_{k=1}^d \left[\mathbf{U}_k \quad \mathbf{U}_{k,1}
ight] \ &\in igodot_{k=1}^d \mathrm{span}([\mathbf{U}_k \ \mathbf{U}_{k,1}]) \subseteq \mathcal{M}_{\leq \mathbf{r}} \ &\mathcal{X} + \mathcal{V}_k &= \mathcal{G} imes_{i=1}^d \mathbf{U}_i + \mathcal{G} imes_k \left(\mathbf{U}_{k,2} \mathbf{R}_{k,2}
ight) imes_{j
eq k} \mathbf{U}_k \ &= \mathcal{G} imes_k \left(\mathbf{U}_k + \mathbf{U}_{k,2} \mathbf{R}_{k,2}
ight) imes_{j
eq k} \mathbf{U}_k \in \mathcal{M}_{\leq \mathbf{r}} \end{aligned}$$

None of any two combination is feasible!

 $\mathcal{X} + \mathcal{V}_0 + \mathcal{V}_k \notin \mathcal{M}_{\leq \mathbf{r}}$

Retraction-free search directions

$$\begin{split} \mathrm{P}_{0}(\mathcal{A}) &:= \operatorname*{arg\,min}_{\mathcal{V}_{0}} \left\{ \|\mathcal{V}_{0} - \mathcal{A}\| : \mathcal{V}_{0} = \mathcal{C} \times_{k=1}^{d} \begin{bmatrix} \mathbf{U}_{k} & \mathbf{U}_{k,1} \end{bmatrix} \in \mathrm{T}_{\mathcal{X}} \mathcal{M}_{\leq \mathbf{r}} \right\} \\ \mathrm{P}_{k}(\mathcal{A}) &:= \operatorname*{arg\,min}_{\mathcal{V}_{k}} \left\{ \|\mathcal{V}_{k} - \mathcal{A}\| : \mathcal{V}_{k} = \mathcal{G} \times_{k} (\mathbf{U}_{k,2} \mathbf{R}_{k,2}) \times_{j \neq k} \mathbf{U}_{j} \in \mathrm{T}_{\mathcal{X}} \mathcal{M}_{\leq \mathbf{r}} \right\} \end{split}$$

Approximations

Select basis $ilde{\mathbf{U}}_{k,1}$, and $ilde{\mathbf{S}}_k := [\mathbf{U}_k \, ilde{\mathbf{U}}_{k,1}]$ is orthogonal

$$\begin{split} \tilde{\mathrm{P}}_{0}(\mathcal{A}) &:= \mathcal{A} \times_{k=1}^{d} \mathrm{P}_{\tilde{\mathbf{S}}_{k}}, \\ \tilde{\mathrm{P}}_{k}(\mathcal{A}) &:= \mathcal{G} \times_{k} \left(\mathrm{P}_{\mathbf{U}_{k}}^{\perp} \left(\mathcal{A} \times_{j \neq k} \mathbf{U}_{j}^{\mathsf{T}} \right)_{(k)} \mathbf{G}_{(k)}^{\dagger} \right) \times_{j \neq k} \mathbf{U}_{j} \end{split}$$

Search direction

$$\hat{\mathrm{P}}_{\mathrm{T}_{\mathcal{X}}\mathcal{M}_{\leq \mathbf{r}}}(\mathcal{A}) := \arg \max_{\mathcal{V} \in \{\tilde{\mathrm{P}}_{0}(\mathcal{A}), \dots, \tilde{\mathrm{P}}_{d}(\mathcal{A})\}} \|\mathcal{V}\|_{\mathrm{F}}$$

$$\mathcal{X}^{(t+1)} = \mathcal{X}^{(t)} + s^{(t)} \hat{\mathbf{P}}_{\mathbf{T}_{\mathcal{X}^{(t)}} \mathcal{M}_{\leq \mathbf{r}}}(-\nabla f(\mathcal{X}^{(t)}))$$

Retraction-free GRAP method (rfGRAP)

- Search direction: $g^{(t)} = \hat{P}_{T_{\mathcal{X}^{(t)}}\mathcal{M}_{\leq r}}(-\nabla f(\mathcal{X}^{(t)}))$
- Stepsize: $s^{(t)}$ Armijo backtracking line search
- Update: $\mathcal{X}^{(t+1)} = \mathcal{X}^{(t)} + s^{(t)}g^{(t)}$

Convergence

Global convergence

• Stationary measurement:

$$\lim_{t \to \infty} \| \mathbf{P}_{\mathbf{T}_{\mathcal{X}^{(t)}} \mathcal{M}_{\leq \mathbf{r}}} (-\nabla f(\mathcal{X}^{(t)})) \|_{\mathbf{F}} = 0$$

• Complexity: $\mathcal{O}(\epsilon^{-2})$ iterations to achieve

$$\|\mathbf{P}_{\mathbf{T}_{\mathcal{X}^{(t)}}\mathcal{M}_{\leq \mathbf{r}}}(-\nabla f(\mathcal{X}^{(t)}))\|_{\mathbf{F}} < \epsilon$$

Local convergence

• Assumption: Łojasiewicz gradient inequality

$$|f(\mathcal{X}) - f(\mathcal{Y})|^{1-\theta} \le L \| \operatorname{P}_{\operatorname{T}_{\mathcal{X}}\mathcal{M}_{\le r}}(-\nabla f(\mathcal{Y}))\|_{\operatorname{F}}$$

- An accumulation point is a limit point
- If $\operatorname{rank_{tc}}(\mathcal{X}^*) = \mathbf{r}$, then the stationary measure $\|\operatorname{grad} f(\mathcal{X}^*)\|_{\mathrm{F}} = 0$ and

$$\|\mathcal{X}^{(t)} - \mathcal{X}^*\|_{\mathbf{F}} \le C \begin{cases} e^{-ct}, & \text{if } \theta = \frac{1}{2}, \\ t^{-\frac{\theta}{1-2\theta}}, & \text{if } 0 < \theta < \frac{\theta}{2} \end{cases}$$

Tucker rank-adaptive method

Toy example on tensor completion

$$\min_{\mathcal{X}\in\mathcal{M}_{\mathbf{r}}} \| P_{\Omega}(\mathcal{X}) - P_{\Omega}(\mathcal{A}) \|_{\mathrm{F}}^{2}$$

→ Performance is sensitive to rank selection!

Flowchart of Tucker rank-adaptive method

Step 1: Line search on fixed-rank manifold

Riemannian gradient descent method (RGD)

- Search direction: $\eta^{(t)} = -\text{grad}f(\mathcal{Y}^{(t)})$
- Stepsize: $s^{(t)}$ Armijo backtracking line search
- Update: $\mathcal{Y}^{(t+1)} = \mathrm{P}^{\mathrm{HO}}_{\mathbf{r}^{(t)}}(\mathcal{Y}^{(t)} + s^{(t)}\eta^{(t)})$

Step 2: Detection of rank deficiency

Given an iterate $\mathcal X$ generated by RGD

Ratio of largest and smallest singular values

$$\frac{\sigma_{1,k}}{\sigma_{\underline{r}_k,k}} > \Delta$$

- $\sigma_{1,k} \geq \cdots \geq \sigma_{\underline{r}_{k}^{*}k}$: singular values of $\mathbf{X}_{(k)}^{(t)}$
- Δ : threshold

Rank-decreasing procedure

• Rank- $\hat{\mathbf{r}}$ truncation of \mathcal{X} : $\hat{r}_k := \min\left\{i : \frac{\sigma_{1,k}}{\sigma_{\underline{r}_k,k}} > \Delta\right\}$

Step 3: Rank increasing

Searching in "normals" matrix case: [G.-Absil'22]

• Decomposition: $N_{\leq \ell}(\mathcal{X}) := \mathcal{M}_{\leq \ell} \cap \left(\bigotimes_{k=1}^d \operatorname{span}(U_k)^{\perp} \right) \subseteq N_{\mathcal{X}} \mathcal{M}_{\underline{r}}$

 $T_{\mathcal{X}}\mathcal{M}_{\underline{r}} + N_{\leq \boldsymbol{\ell}}(\mathcal{X}) \subseteq T_{\mathcal{X}}\mathcal{M}_{\leq r},$

• Line search along $\mathcal{N}_{\leq \ell} \in N_{\leq \ell}(\mathcal{X})$:

 $\underline{\mathbf{r}} < \operatorname{rank}_{\operatorname{tc}}(\mathcal{X} + s\mathcal{N}_{\leq \boldsymbol{\ell}}) \leq \mathbf{r}$

Given bases $\mathbf{U}_{k,1} \in \operatorname{St}(\ell_k, n_k)$ and $0 < \ell < \mathbf{r} - \underline{\mathbf{r}}$

Rank-increasing procedure

- Compute $\mathcal{N}_{\leq \ell} := -\nabla f(\mathcal{X}) \times_{k=1}^{d} P_{\mathbf{U}_{k,1}} \in \mathcal{N}_{\leq \ell}(\mathcal{X})$
- Stepsize: *s* Armijo backtracking line search
- Rank increasing: $\mathcal{X} + s\mathcal{N}_{\leq \ell}$

$$\mathsf{P2GD} \qquad \qquad \mathcal{X}^{(t+1)} = \mathbf{P}_{\leq \mathbf{r}} \left(\mathcal{X}^{(t)} + s^{(t)} \mathbf{P}_{\mathbf{T}_{\mathcal{X}^{(t)}} \mathcal{M}_{\leq \mathbf{r}}} (-\nabla f(\mathcal{X}^{(t)})) \right)$$

A big picture

A big picture

A big picture

Numerical experiments: tensor completion

• $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$: partially observed on $\Omega \subseteq [n_1] \times \cdots \times [n_d]$ $[n_k] = \{1, 2, \cdots, n_k\}, \ k = 1, \dots, d$

Problem formulation

$$\min \ \frac{1}{2} \| P_{\Omega}(\mathcal{X}) - P_{\Omega}(\mathcal{A}) \|_{F}^{2}$$

s. t. $\mathcal{X} \in \mathcal{M}_{\leq r},$

- P_{Ω} : the projection operator onto Ω
- $\mathbf{r} = (r_1, r_2, \dots, r_d)$: an array of d positive integers

Running platform

- Workstation with two Intel(R) Xeon(R) Processors Gold 6330 @ 2.00GHz×28 and 512GB of RAM
- Matlab R2019b under Ubuntu 22.04.3

Compared methods

- ★ GRAP: gradient-related approximate-projection method Tucker
- ★ rfGRAP: retraction-free GRAP Tucker
- ★ TRAM: Tucker rank-adaptive method Tucker
- GeomCG: Riemannian conjugate gradient Tucker [Kressner-Steinlechner-Vandereycken'14]
- Tucker-RCG: preconditioned Riemannian conjugate gradient Tucker [Kasai-Mishra'16]
- CP-AltMin: graph-based alternating minimization CP [Guan-Dong-G.-Absil-Glineur'20]
- TT-RCG: Riemannian conjugate gradient *TT* [Steinlechner'15]
- TR-RGD: preconditioned Riemannian gradient descent TR [G.-Peng-Yuan'24]

True rank $\mathbf{r} = \mathbf{r}^*$

- \mathcal{A} : Low-rank tensor with $n_1 = n_2 = n_3 = 3$, and Tucker rank $\mathbf{r}^* = (6, 6, 6)$
- p = 0.01, 0.05

Under-estimated initial rank $\mathbf{r}^{(0)} < \mathbf{r}^*$

• \mathcal{A} : Low-rank tensor with $n_1 = n_2 = n_3 = 3$, and Tucker rank $\mathbf{r}^* = (6, 6, 6)$

•
$$p = 0.05$$
, $\mathbf{r}^{(0)} = (1, 1, 1), (5, 5, 5)$

Over-estimated initial rank $\mathbf{r} > \mathbf{r}^*$

- \mathcal{A} : Low-rank tensor with $n_1 = n_2 = n_3 = 3$, and Tucker rank $\mathbf{r}^* = (6, 6, 6)$
- p = 0.01, $\mathbf{r} = (7, 7, 7), (8, 8, 8), \dots, (12, 12, 12)$

Two hyperspectral images

- Sampling rate p = 0.1.
- Tucker rank $\mathbf{r} = (5,5,5), (10,10,10), \dots, (30,30,30)$

Left: "Ribeira" Right: "AVIRIS"

Last rank obtained in TRAM

(15, 15, 6) coincides with fine-tuning (Kressner et al.'14)!

Hyperspectral images: relative errors and PSNR

Tucker rank ${\bf r}$	Results	GRAP	rfGRAP	TRAM	GeomCG	Tucker-RCG
(r_1, r_2, r_3)		"Ribeira"				
(5, 5, 5)	PSNR	24.9351	24.9325	24.9351	24.9351	24.9350
	relerr	0.2984	0.2985	0.2984	0.2984	0.2984
(10, 10, 10)	PSNR	26.8481	26.8482	26.8648	26.8483	26.8482
	relerr	0.2394	0.2394	0.2389	0.2394	0.2394
(15, 15, 15)	PSNR	28.3451	28.3450	28.4127	28.3451	28.3451
	relerr	0.2015	0.2015	0.1999	0.2015	0.2015
(20, 20, 20)	PSNR	29.3908	29.3934	29.5197	29.3917	29.3924
	relerr	0.1786	0.1786	0.1760	0.1786	0.1786
(25, 25, 25)	PSNR	30.2324	30.1852	30.3897	30.2315	30.2332
	relerr	0.1621	0.1630	0.1592	0.1622	0.1621
(30, 30, 30)	PSNR	30.7088	30.7182	30.9921	30.7579	30.7566
	relerr	0.1535	0.1533	0.1486	0.1526	0.1527
		"AVIRIS"				
(5, 5, 5)	PSNR	31.7181	31.7181	31.6955	31.7181	31.7181
	relerr	0.0835	0.0835	0.0837	0.0835	0.0835
(10, 10, 10)	PSNR	33.7393	33.7393	33.7517	33.7393	33.7394
	relerr	0.0661	0.0661	0.0660	0.0661	0.0661
(15, 15, 15)	PSNR	35.1308	35.1157	35.1427	35.1144	35.1251
	relerr	0.0564	0.0564	0.0563	0.0565	0.0564
(20, 20, 20)	PSNR	36.1776	36.1777	36.5438	36.1781	36.1780
	relerr	0.0500	0.0500	0.0479	0.0500	0.0500
(25, 25, 25)	PSNR	36.6010	36.6430	37.5433	36.6142	36.6002
	relerr	0.0476	0.0473	0.0427	0.0475	0.0476
(30, 30, 30)	PSNR	36.3106	36.4263	37.4879	36.1278	36.1505
	relerr	0.0492	0.0485	0.0430	0.0502	0.0501

MovieLens 1M dataset

[https://grouplens.org/datasets/movielens/1m/]

- 6040 users, 3952 movies, 150 periods, 1M ratings
- $|\Omega|=8 imes 10^5$, $|\Gamma|=2 imes 10^5$, and $p=2.23 imes 10^{-4}$
- $\mathbf{r} = (1, 1, 1), (2, 2, 2), \dots, (15, 15, 15)$

Low-rank structure on mode two (movies)!

Take-home notes

- Geometry of Tucker tensor varieties
- Geometric methods: GRAP and rfGRAP
- Rank-adaptive methods: TRAM
- Apocalypse-free methods converging to stationary points

References

- 1. Bin Gao, Renfeng Peng, Ya-xiang Yuan. *Low-rank optimization on Tucker tensor varieties.* arXiv:2311.18324, (2023)
- Bin Gao, Renfeng Peng, Ya-xiang Yuan. Optimization on product manifolds under a preconditioned metric. arXiv:2306.08873, (2023)
- Bin Gao, Renfeng Peng, Ya-xiang Yuan. Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition. Computational Optimization and Applications, (2024)
- 4. Yu Guan, Shuyu Dong, **Bin Gao**, P.-A. Absil, François Glineur. Alternating minimization algorithms for graph regularized tensor completion. arXiv:2008.12876, (2023)
- Shuyu Dong, Bin Gao, Yu Guan, François Glineur. New Riemannian preconditioned algorithms for tensor completion via polyadic decomposition. SIAM Journal on Matrix Analysis and Applications, 43-2 (2022), 840-866
- 6. Bin Gao, P.-A. Absil. A Riemannian rank-adaptive method for low-rank matrix completion. Computational Optimization and Applications, 81 (2022), 67-90

Thanks for your attention!

Email: gaobin@lsec.cc.ac.cn Homepage: https://www.gaobin.cc